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Abstract

The design and generation of modified involute helical gears that have a localized and
stable bearing contact, and reduced noise and vibration characteristics are described. The
localization of the bearing contact is achieved by the mismatch of the two generating surfaces
that are used for generation of the pinion and the gear. The reduction of noise and vibration
will be achieved by application of a parabolic function of transmission errors that is able to
absorb the almost linear function of transmission errors caused by gear misalignment. The
meshing and contact of misaligned gear drives can be analyzed by application of computer
programs that have been developed. The computations confirmed the effectiveness of the
proposed modification of the gear geometry. A numerical example that illustrates the devel-

oped theory is provided.



Nomenclature

a Parabola parameter (fig. 2(a))
a. Modification coefficient of pinion rack-cutter surface (fig. 5)

b Slope of linear function (fig. 1(b))

E,. The shortest distance between the pinion and rack-cutter . (fig. 6(b))
E,, The shortest distance between the pinion-gear axes (fig. 7)

E,, The shortest distance between the gear and rack-cutter I, (fig. 6(a))
ma  Gear ratio
M;; Coordinate transformation matrix (from S; to ;)

n, Unit normal vector to rack-cutter surface Z, (r = ¢,t)
Unit normal vector to surface L; represented in coordinate
system Sy (: = p,g)
| N,- Number of teeth of the pinion (i = 1, p) or the gear (i =2,9)

N, Normal vector to rack-cutter surface =, (r = ¢, t)

pn  Circular pitch in normal section (fig. 3)

P,  Diametral pitch in normal section

T Radius of the pitch circle of the pinion (or gear) (i = p,g)
Position vector of surface %;

ry Position vector of surface I; represented in coordinate system Sy
s,s, Displacement of rack-cutter Z, (r = ¢,t) (fig. 6)

Si Coordinate system :

u;,0; Surface parameters of Z; (: = p, g)

u,,l, Surface parameters of I, (r = c, )
v} Velocity of rack-cutter surface point (r = c,t)
v{i))  Relative velocity of surface T; point with respect to surface X; point
a, Normal Vpr@ssurrerarrxgle (fig- 3) o

B, Helix angle on the pinion (gear) pitch cylinder (figs. 3 and 4)

) Elastic approach of pinion and gear tooth surfaces



Change of center distance

Change of pinion lead angle on the pitch cylinder

Displacement of contact point caused by misalignment

Misalignment angle formed by crossed gear axes (fig. 8(a))
Misalignment angle formed by intersected gear axes (fig. 8(b))
Transmission error (fig. 2)

Vector of the angle of compensating turn of gear 2

Lead angle on pinion pitch cylinder

Pinion (i = p) and gear (i = g) tooth surfaces

Rack-cutter surfaces (r = c,t)

Rotation angle of gear i (i = 1,2,p,g) (figs. 2 and 7)

Rotation angle of gear being in mesh with the rack-cutter X, (fig. 6(a))
Rotation angle of pinion being in mesh with the rack-cutter X, (fig. 6(b))



1. Introduction

Conventional helical involute gears are designed for transformation of rotation between
parallel axes. Theoretically, the gear tooth surfaces are in line tangency at every instant,
along a straight line that is a tangent to the helix on the gear base cylinder. However, the
line contact of gear tooth surfaces can be realized only for an ideal gear drive. In reality, the
crossing of axes of rotation (instead of being parallel) and errors of lead angle result in the
so-called edge contact, as a specific instantaneous point contact caused by curve-to-surface
tangency. Here, the contacting curve is the edge of the tooth surface of one of the mating
gears and the contacting surface is the tooth surface of the other one.

Trying to avoid the edge contact, the manufacturers of helical gears use various methods
of crowning (deviation) of the theoretical gear tooth surfaces. However, the applied methods
of crowning have not been complemeﬁted with the analysis of transmission errors caused
by misalignment. Our investigation shows that improper crowning may avoid edge contact
but cannot avoid the appearance of transmission errors of the shape shown in fig. 1. The
function of such transmission errors is piecewise, almost linear, and has the frequency equal
to the cycle of meshing of one pair of teeth. The above mentioned transmission errors cause
high vibration and noise and therefore such transmission errors must be avoided. This can
be achieved by application of computer numerically controlled (CNC) machines that have
opened new perspectives for generation of gear tooth surfaces with improved topology.

The intent of this paper is to describe a modified topology of low-noise involute helical
gears that satisfies the following requirements:

(1) The noise and vibration of helical gears are reduced substantially by application of a
predesigned function of transmission errors of a parabolic type (fig. 2). Such a function can
absorb (see below) an almost linear function of transmission errors shown in fig. 1.

(2) The bearing contact is localized. Theoretically, the tooth surfaces are in tangency at

every instant at a point instead of a line. The contact of gear tooth surfaces at every instant



is spread over an elliptical area due to elastic deformation of gear teeth. The dimension of
the instantaneous contact ellipse can be controlled by choosing proper design parameters.
(3) The proposed gear tooth surfaces can be generated by two rack-cutters designed for
generation of the pinion and gear, respectively. A nonlinear transmission function in the
process for gear generation must be provided and this can be accomplished by application of

the CNC machine. A linear transmission function is provided in the process for the pinion

generation.

2. Interaction of Parabolic and Linear Function of Transmission Errors

. . : . N, .
The ideal gears transform rotation with constant gear ratio ma = —]\Tl’ and the ideal
2
transmission function is

() = 3o )

where N, and N; are the tooth numbers of the pinion and gear, respectively.

However, the crossing of gear axes (instead of being parallel), intersection of these axes
and errors of lead angle cause a transmission function ¢,(4:) that is shown in fig. 1(a).
Our investigation (see sections 4-6) shows that the function of transmission errors caused by
above mentioned errors of misalignment is a piecewise almost linear function of transmission

errors Ady($:) with the frequency of a cycle of meshing for one pair of teeth (fig. 1(b)).

Here:
, N
A¢2(¢1) = ¢2(<P1) - E% (2)

Transmission errors of this type cause a discontinuity of the transmission function and a



big jump of the angular velocity of the driven gear at transfer points (when one pair of teeth
is changed to another one). Therefore, vibration and noise become inevitable.

It was proven (1,2,4] that a predesigned parabolic function of transmission €rrors in-
teracting with a linear function will become a parabolic function with the same parabola
parameter. A parabolic function of transmission errors is much more preferable than a lin-
ear function since the transmission function will be a continuous one, the jump of angular
velocity of the driven gear and the stroke at the transfer point will be substantially reduced.

Fig. 2(a) shows the sum of two functions of transmission errors

Ada(81) = AP (1) + AP (81) = bgy — a? (3)

The first one, A¢9)(¢1), is caused by misalignment. The second one, A¢§2’(¢1), is a
predesigned parabolic function which exists even if misalignment does not appear. It is easy
to verify that equation (3) represents in the new coordinate system (A, %) the parabolic

function (fig. 2(b)) that is designated as
Dy = —ayp} (4)

The parabola parameter a in equations (3) and (4) is the same. Axes of coordinate
system (Avg, ¥1) and (A¢s, ¢;) are parallel but the origins are different. The coordinate
transformation from (Ada, ¢1) to (A, 1) is represented with the following equations

b2 b
A¢2=A¢2"‘Ea ¢1=¢1—% (5)



The difference between functions A¢,(é;) and A,(1,) is the location of the couple of
points (A, B) and the respective points (4*, B*) (fig. 2(a)). The symmetrical location of
(A, B) is turned into the asymmetrical location of (A*, B*). However, the interaction of
several functions Av,(1;) determined for several tooth surfaces being in mesh may provide
a symmetrical parabolic function of transmission errors as shown in fig. 2(b). This can be

achieved if the parabolic function A¢z($;) will be predesigned in the area (fig. 2(a))

27

51(B) - hi(A) 2 5 +2 ©)
1

b . . . . .
where ¢ = %" Requirement (6), if observed, enables to provide a continuous function
2
At(11) for the range of ]_V"E where N; is the pinion tooth number. It will be shown below
1

(see sections 5 and 6) that functions of transmission errors caused by angular errors (such
as the crossing and intersection of the axes of rotation, error of the lead angles) are indeed
piecewise linear functions, and the coefficient b can be determined knowing the angular error

caused by misalignment and the design parameters of the gear drive.

3. Surfaces of Rack-Cutters

The imaginary process of generation of conjugate tooth surfaces is based on application
of two rack-cutters that are provided respectively by a plane I, and a cylindrical surface ¥
that differs slightly from plane £, (see fig. 3). The rack-cutter surfaces X and X, are rigidly
connected each to other in the process of the imaginary generation, and they are in tangency
along a straight line, Osz; (fig. 5). This line and the parallel axes of the gears form angle
3,, that is equal to the helix angle on the pinion (gear) pitch cylinder. The normal sections
of the rack-cutters are shown in figs. 3 and 5. Rack-cutter surface X, generates the pinion

tooth surface E,, and the rack-cutter surface I generates the gear tooth surface L.



Gear Rack-Cutters %,

Using figs. 3, 4 and 5, we représent the transformation matrix from system S, to S;

(r =c¢,t) and S to S, as follows

(10 0 0]
0 cosp, g, 0
M., = osf, sinf )
0 —sinf, cosf, 0
L 0 0 0 1]
[ cosa, —sine, 0 —d,cosa, ]
sina, cos 0 a, —d,sin
M, = o pSIL Qo (8)
0 0 1 0
i 0 0 0 1 ]
[ COS Q, —sina, 0 —d,cos a, ]
sin a, cos 3, cosa,cos B, sinf a, — dysina,) cos 3,
Moy = g o s (am = dysin ) co ©)
—sina,sinfB, —cosa,sinfB, cosfB, —(am — dpsina,)sinf,
] 0 0 0 1 ]

Here a, and 3, are the normal pressure angle and the helix angle of the rack-cutter; am

is the half of the tooth width of the rack-cutter on middle line m — m (fig. 3), where

(10)



and P, is the normal diametral pitch of the rack-cutter, d, is the distance between middle
line m — m of the rack-cutter and the origin Oy along axis zs, fig. 9. Parameter d, can be
controlled to adjust the location of the contact path on the gear tooth surface.

Surface T, of the gear rack-cutter is a plane that is represented in S, as

T
) = [ ue 0 b ] (11)

where (u:, l;) are the surface parameters.

Rack-cutter surface I, is represented in coordinate system S, by the matrix equation

re(us, le) = Mar) (12)

Equations (9), (11) and (12) yield

(ug — d,) cos a,

re=| [(u—d,)sina, + amcos B, + lisin b, (13)
—[(us — dp) sin @, + am]sin B, + lrcos o
The unit normal to I is represented in S; by equations
Nt arg 61':
= — = — X — 14
n; !Nt‘ + Nt alg X aut ( )

that yield



T
n; = [ —sina, cosea,cosB, — COSa,sinf, ] (15)

Pinion Rack-Cutter Surface .

Rack-cutter . generates the pinion. The normal section of rack-cutter surface I, (fig. 5)
is a parabolic curve. We remind that the normal section of rack-cutter surface I, is a straight
line directed along axis z; in fig. 5. The parabolic curve is in tangency with the z,-axis at
point N(O,). Rack-cutter surfaces X. and I, are in tangency along a straight line that is
parallel to axes z, and 2, and passes through point O, that coincides with point N. The
deviation of the parabolic curve from the z;-axis affects the dimensions of the instantaneous

contact ellipse.

Rack-cutter surface I, is represented in S; as follows
) T
rs:) = [ U, _acug Ic ] (16)

where a. is coefficient of the parabolic normal section, and (u., l.) are the surface parameters

of ..

Rack-cutter surface I, is represented in coordinate system S, by the matrix equation
I'c(ucs lc) = Mcbrgb) (17)

Equations (9), (16) and (17) yield

10



(¢ — dp) cos a, + a.u?sina,

re=1| [(uc— dp)sina, + am]cos B, — acu? cos a, cos B, + . sin B,

L —[(ue = dp) sin @, + am]sin B, + acul cos @, sin B, + I cos B, |

The unit normal of I, is represented as

or.  Ore
_ Ou. Ol
LN
Ou. 0l

c

Equations (18) and (19) yield

Sin ap — 2a.Uc COS Oy
1 .
Ne = 775 2v05 | —\COS +20u sina COS,B
¢ (1 + 4agu3)o.s ( ° clic o) o

(cos a, + 2a.u. sin a,) sin 3,

(18)

(19)

Using equations (13), (15), (18) and (20), it is easy to verify that surfaces ¥. and L, are

in tangency along the z, axis when u. = u; = 0.

4. Pinion and Gear Surfaces Generated by Rack-Cutters

In the process for generation the two rigidly connected rack-cutters perform translational

motion while the pinion and the gear perform rotational motions as shown in fig. 6. To

provide a predesigned parabolic function of transmission errors for each cycle of meshing, 1t

is necessary to observe certain relations between the motions of the rack-cutters and gears,

respectively.

11



The angle 1, of pinion rotation and the displacement s. of rack-cutter . are related by

the following linear function

Here: r, is the radius of the pinion pitch cylinder.

The angle 1, of gear rotation and the displacement s; of rack-cutter ¥, are related as

follows

N t t
¢gt = ]—V;:(%) — a(i_ - ¢(0))2 (22)

4

Here: N, and N, are the tooth numbers of the pinion and gear, respectively, and v® is

the initial position angle of the gear for the modification gear rotation.

Equation of Meshing between Rack-Cutter ¥, and Pinion %, |
The equation of meshing between rack-cutter X, and the pinion tooth surface X, is

represented as
flue, ley Wpe) =NE . viP =0 (23)

where t,. is the angle of rotation of the pinion in the process for generation. The normal
N to E. in S. can be obtained by equation (20), and the relative velocity of the pinion

with respect to L. may be represented as

12



v = w® x (R, + 1) = (0 5 0 )Td—ft”—‘: (24)

Here: R, = (0,0.). = (r, rp¥bpc 0)T, r, = E,. is the radius of the pitch cylinder of
the pinion (fig. 6), w® =w®(0 0 1)T.

Substitution of equations (19) and (24) into (23), yields the following equation of meshing
between ¥, and T,

[(ue — dp) + 2a2ul] cos B,

sin @, — 2a. U, COS &,

f(um I, zl’ypc) =l sinf, + Tp¢pc + an, cos B +

=0 (25

Surface of Pinion X,
In the process of generation of pinion surface, rack-cutter X, performs uniform translation

and the workpiece performs uniform rotation (fig. 6(b)). The transformation matrix from

system S. to S, can be represented as

cos P, sintpp, 0 T,costp, + r,,zb,,; Sin VY. ]
M, = —sinyy. cospe 0 —7psin vy + rphp. COS Wpe ' (26)
0 0 1 0

0 0 0 1

Pinion surface I, in system S, is represented as

rp(uc, lc-: d’pc) = Mpcrc

(27)
(ue — dp) + 20307
sin o, — 2a.uU. COS

I.=—{ cos B, + Tppe + am cos B,}/ sin B,

13



Substituting equation (26) into (27), we obtain equation of ¥, as

o(tes Ype) = Tp(Up, bp) ' (28)

Equation of Meshing between Rack-Cutter ¥, and Gear %,

The equation of meshing between rack-cutter X, and the gear tooth surface X, is repre-

sented as
flue Ly $e) =n® v =0 (29)

whére g is theﬁia;igliei of rotation of the géar in the 'prli'oéerssr for generation. The unit normal
ngt) to ¥, in S; is represented by equation (15), and v§9" is the relative velocity of the gear
with respect to rack—cutter‘Zt.

We recall that the rack-cutter ¥, performs translation with constant velocity, but the

gear performs rotation with variable angular velocity that is represented as (see equation

(22))

T

(9) Ny () dpe

W =| 0 0 [ 20— )| L= (30)
‘ [ ¥, i | =

The relative velocity vsg 9 is represented as
N, c
v = wi? x Ry +1) = (0 3Py 0 )Td—‘db” (31)
g t

14



where

N,
R’Q =( —Tg J_v:irgd)pc 0 )T (32)

and r, = E, is the radius of pitch cylinder of the gear (fig. 6).
Substitution of equations (15), (30), (31) and (32) into (29) yields the following equation

of meshing between I, and X,

. . N,
f(uh lta "l’gt) = (ui - p) cos ﬂo + sin ao(lt sin ﬁo + Ngrg“/)pc + am, cos ﬁo)

g 33)
2aN, 1y (tpe — ) (
N, = 2aN,(¥ne Z o) cos a, ¢os J3,

where

bt = %:«bm — (e — O (34)

Surface of Gear %,

It must be remembered that the gear with the tooth surface £, performs rotation about
its axis with varied angular velocity while rack-cutter X, performs uniform translation (fig.

6(a)). The transformation matrix from system S: to S, can be represented as

15



[ . N, . 7
—costhy: sinthy 0 rycosthy+ 7Ty NE¢” sin ¥,
M, = —sinty —cosy, 0 7ysinthy — rgN—,:gbpc cos Pye (35)
0 0 1 0
|0 0 0 1 |

Gear tooth surface ¥, in system S, can be represented as

rg(u'ta L, ¢'gt) = Mgtl't

cot 3,
sin o,

L= —{(us — dy)

~

N, 1
+ (’N‘Sry"/)pc + a,, cos ﬂo)s-_— (36)

in G,

2aNyrg(bpe — ’l’(o))
NP - zaNy('ﬁL’pc - ¢(°)) cot @ cot ﬁo} /

The derivation of equation (36) is based on transformation of equations (33) and (34).
Equations (35) and (36) enable to represent the gear tooth surface in two-parameter form

as follows

To(ut, Ygr) = 74(ug, b;) (37)

5. Computerized Simulation of Meshing and Contact of Pinion-Gear Tooth

Surfaces

We consider that the surfaces of the pinion and the gear generated by worms %, and Zy

are represented in coordinate systems S, and S, respectively. The fixed coordinate system Sy

16



is rigidly connected to the housing of the gear drive (figs. 7 and 8). The movable coordinate
systems S, and S, are rigidiy connected to the pinion and the gear, respectively. An auxiliary
coordinate system S, is applied for simulation of meshing when the géar axis is crossed or
intersected with the pinion axis instead of being parallel, and when the shortest distance
between the pinion and gear axes is changed. The errors of misalignment are referred to the
gear. The misalignment angle A+ is decomposed into two components, A<y, and A<, that
represent the crossing angle and the intersection angle, respectively. The pinion performs
rotational motion about the z;-axis. The axis of gear rotation is z;. The shortest distance
between the axes of rotation is designated as E,,.

The rotation matrices from system S, to Sy for crossed and intersecting angles are rep-
resented in the followings (fig. 8)
-1 0 0

Lyp=| 0 —cosAv, sinAx; (38)
0 sinAy, cosAy,

L= 0 -1 0 (39)

We represent the pinion and gear tooth surfaces, I, and X,, and their unit normals in
coordinate system S;. The conditions of continuous tangency of surfaces ¥, and ¥, are

represented by the following equations {1,2].
rgtp)(“p’ bp, $p) = rff‘q)(ug, 045 &) (40)

17



1P (up, 05, 6p) = 17 (ug, 85, B5) (41)

Vector equation (41) provides only two independent equations since In(flp N = ln(f)l = 1.
The total number of independent equations provided by (40) and (41) is five that relate six

parameters

fi(up, 0p, dp,ug,0,,6,) =0 (:=1,2,...5) (42)

The continuous solution of the system of nonlinear equations (42) is based on the following

procedure:

(1) Using an initial guess, we determine a set of parameters that satisfy equation system

(42). Thus

PO = (2,69, 9,69, 4 43)

(2) One of the variable parameters, say ,, is chosen as the input one, and is supposed

that the Jacobian

D(fl:f27 f37 f‘h fS)
D(uy, 8p, ug, 0, é;)

(44)

differs from zero. The derivatives in the Jacobian are taken at point P().

(3) Then, equation system (42) can be solved in the neighborhood of P© by functions

18



¢y(¢p)v“p(¢p)v0p(¢P)a“g(¢p)sBy(d’p) (45)

(4) Vector function rp(u,,8,) that determines the pinion surface ¥, and functions u,(¢,),
8,(¢,) enable to determine the path of contact on X,.

(5) Similarly, we can obtain the path of contact on the gear surface £, using vector
function ry(ug,6,) and functions uy($;), 04(d)-

(6) The paths of contact on pinion and gear tooth surfaces slightly deviate from helices
in the case of an aligned gear drive. The line of action for an aligned gear drive (the set of
contact points in Sj) slightly deviates from a straight line that is parallel to the gear axes.

(7) The transmission function ¢,(¢,) deviates from the ideal transmission function, and
the function of transmission errors coincides with the predesigned parabolic function.

(8) The determination of dimensions and orientation of the instantaneous contact ellipse
needs the knowledge of the priﬁcipa.l curvatures and directions of contacting surfaces and the
elastic approach of surfaces. This problem can be substantially simplified if the pinion-gear
principal curvatures and directions are expressed in terms of the principal curvatures and

directions of the generating surfaces and parameters of motion [1,2].

6. Numerical Example

The method developed in this report is illustrated with the example discussed below. The
design parameters of the pinion and gear are listed in Table 1. The numerical simulation

of meshing is performed for an aligned and misaligned gear drives with various errors of

alignment for the pinion and gear.

Case 1. Aligned gear drive

Figure 9 shows the transmission errors for the aligned gear drive. The TCA performed

19



Table 1: Design parameters of pinion and gear

pinion gear
tooth number N, =20 Ny, =100
normal diametral pitch P,=5 ;1; P.=5 %
normal pressure angle a, = 20° o, = 20°
helix angle on pitch cylinder 3, = 30° 8, = 30°
tooth length L=1.6 in. L=1.6 in.
modification coefficient a. = 0.0008 a = 0.0014
elastic approach | § = 0.007 mm. 6 =0.007T mm.

confirms that the predesigned parabolic function of transmission errors exists. The maximum
transmission error is approximately 8 arc seconds. Figure 10 shows the contact pattern and
the contact path. The path of contact on the tooth surface is in the longitudinal direction.
The major axis of the instantaneous contact ellipse is 6 mm for the assumed elastic approach

of the surfaces equal to 0.007 mm.

Case 2. The pinion-gear rotation axes are crossed

Figures 11 and 12 show the transmission errors and the contact pattern for the case when
the crossing angle A<cross is 4 arc minutes. The maximum transmission error is 8 arc seconds
and contact paths are shifted up and down on the gear and pinion surfaces, respectively.
Figurés 13 and 14 show the transmission errors and contact pattern for A<v.r.,s = —4 arc

minutes.

Case 3. The pinion-gear rotation axes are intersected
Figures 15 and 16 show the transmission errors for the misalignment A%interseet = 4
arc minutes. Figures 17 and 18 show the transmission errors and contact pattern for the

mentioned above error of alignment.

20



Case 4. Influence of error of lead angle

Figures 19 and 20 show the transmission errors and contact pattern when the error of

the lead angle is 4 arc minutes.

Figures 21 and 22 show the transmission errors and contact pattern when the error of

the lead angle is —4 arc minutes.

For all of above cases, the maximum transmission error does not exceed 8 arc second

(with very small deviations of this value).

7. Conclusion
From the analytical study presented in this report the following conclusions can be drawn:

(1) The interaction of a parabolic and a linear functions of transmission errors has been

" "discussed to prove the possibility to absorb almost, linear functions of transmission

errors caused by misalignment.

(2) Mismatched surfaces of two rack-cutters for generation of modified involute gears have

been proposed.
(3) Generation and geometry of pinion-gear modified tooth surfaces have been determined.

(4) Computerized simulation of meshing and contact of pinion-gear tooth surfaces has been

developed.

(5) An algorithm for determination of relations between the curvatures of the generating

and the generated surfaces has been developed.
(6) An algorithm for determination of the contact ellipse has been developed.

(7) Directions for users of application of developed computer programs for the design of
gears with the modified geometry and computerized simulation of their meshing and

contact have been developed (Appendix C).

21



References
1. Litvin, F.L.: “Theéry of Gearing”, NASA Pumic;t'ionrlr.?m, 1989.

2. Litvin, F.L.: “Gear Geometry and Applied Theory”, Prentice Hall, Englewood Cliffs,
New Jersey, 199%4.

3. Litvin, F.L. and Krylov, N.N. and Erichov, M.L.: “Generation of Tooth Surfaces by
Two-Parameter Enveloping”, Mechanism and Machine Theory, 1975, Vol.10, pp. 365-
373.

4. Litvin, F.L. and Zhang, J., Handschuh, R.F. and Coy, J.J.: “Topology of Modified
Helical Gears”, Surface Topology, p.p. 41-58, March, 1989.

5. Reishauer CNC Gear Grinding Machines, Catalogs, Switzerland.

22



- @,

eaife———

Cycle of meshing

/ . - &

Cycle of meshing

Fig. | Transmission function and transmission errors
for a misaligned gear drive
23



d |
(4 N \ -be
i
< 18" 'f ’
;2N
¢ A )
4 /; N’ \—B_-—Aﬁ—‘a#
A L':\ i, =-a¥y
(a)
&Y,
.” e -'#,1

Fig. 2 Interaction of parabolic and linear functions

24



N,
é ! yt
Bo 0t
0q
7 Ya
4
(b) %o
el L
\ * = Yq
N N; d
(c)

Y

Fig. 3 Normal sections of rack-cutters

25



Parallel to gear axes

Fig. 4 Orientation of rack-cutters with respect to gear axes
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Fig. 5 Normal section of pinion rack-cutter surface
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INTERSECTING ANGLE BETWEEN RXES: -4 MINUTES

GERR
901
= J )Ll Il LIS
= g0 777777717 77177/777/7
e
T
&
=
E 70-
=) PINION
o
=
] YAMLALLNMAMAAANANY
60 AAL L ALLA LV VAV
50 ' * . . . :
-30 -20 -10 0 10 20 0
AXIS Z MM

Fig. 18 Contact pattern for the misaligned

gear drive with A7, . = — 4 arc minutes

40
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Appendix A. Relations between the Curvatures of the Generating and Generated

Surfaces

Direct Relations between Principal Curvatures and Directions of Mating Sur-
faces

The main advantage of this approach (proposed by Litvin) is the possibility to determine
the principal curvatures and direptions of the generated surface in terms of principal curva-
tures and directions of the generating tool surface, and the parameters of motion. In this
case, the tool surfaces for the generation of the gear and the pinion tooth surfaces are rack
cutters. The equations developed permit a simplified computational procedure.

The system of equations that relate the principal curvatures and directions of the gen-
erating and generated surfaces is as follows. Consider that unit vectors e; and e), represent
the principal directions on the tool surface ¥, at point P of tangency of surfaces X, and Z,
(fig. Al). The principal curvatures on the mating surfaces k; and &, of the tool are given;
the parameters of motion (see below) are also given.

The goal is to determine angle o that is formed by unit vectors ey and e,, and principal
curvatures &, and «,. (The unit vectors e, and e, represent the principal directions on

surface ¥;). The system of equations for determination of o, k,, and &, is as follows.

2bysbys
tan20 = Al
B — B — (ry — ma)tss (41)
2b15b25 bgs - b§5 - (Kj - Kh)t33
-_— s -— - == A2
e = K ta3 sin 20 ta3 cos 20 (42)
Y 2
nq+n,=nf+n,,+él-5tib—2§- (A3)
a3

Here:
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bis = —(w?.ey) — k(v . ef) (A4)

b25 = (wm) . ef) - Kh(V(u) . eh) (AS)

= =0 [w® x V) = (W x vi)] :
(A6)
+(n x W12). v(12) _ i (v(12) . e[)? — ki(v? . ep)?
The nomenclature for equations (A4) to (A6) is described as follows:

w(@) angular velocity of the generating tool

w(® angular velocity of the generated gear

w12 defined as w® - w?

vg) transfer motion velocity of the generating tool

vﬁ,’.’ transfer motion velocity of the generated gear

v12) defined as vi) — v

n surface unit normal vector

The equations discussed above are used in the TCA program for determination of the

contact ellipse at the points of contact path of the modified helical gear drive.

Numerical Example

The input and output for the determination of the principal curvatures of the pinion
tooth surface are shown in Tables Al and A2. The input and output for the determination

of the principal curvatures of the gear tooth surface are shown in Tables A3 and A4.
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Table Al Input Data

Description Symbol Values

first principal curvature of tool K¢ -0.0016 (1/mm)
second principal curvature of tool Kh 0.0 (1/mm)

first principal direction of tool ey [0.0016 — 0.4999 0.8660]7
second principal direction of tool e, [0.9387 0.2992 0.1710)7
angular velocity of tool (1/sec) | w® [0.0 0.0 0.0]T
angular velocity of pinion (1/sec) w® [0.0 0.0 1.0]T
transfer velocity of tool v 0.0 58.6588 0.0)T
(mm/sec)

transfer velocity of pinion vid [—0.1514 58.5951 0.0]T
(mm sec)

surface normal of tangent point n [—0.3420 0.8138 0.4698]7

Table A2 Qutput Data

Description (for pinion) Symbol

Values

first principal curvature

-0.001543 (1/mm)

second principal curvature

0.03907 (1/mm)

first principal direction

e, |[0.1751 —0.4361 0.8827]"

second principal direction

[0.9222 0.3865 0.0080]7
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Table A3 Input Data

Description Symbol Values

first principal curvature of tool Ky 0.0 (1/mm)
second principal curvature of tool Kh 0.0 (1/mm)

first principal direction of tool e; | [0.93970.2962 0.1710]7
second principal direction of tool e [0.0 —0.5 0.8660]T
angﬁlar velocity of tool (1/sec) w(® [0.0 0.0 0.0]F
angular velocity of gear (1/sec) w? [0.0 0.0 — 0.2003)T
transfer velocity of tool v [0.0 58.6588 0.0
(mm/sec)

transfer velocity of gear vi? | [-0.2096 58.7218 0.0]T
(mm/sec)

surface normal of tangent point n [~0.3420 0.8138 0.4698]T

Table A4 Output Data

Description (for gear) Symbol Values

first principal curvature Kq -0.007836 (1/mm)
second principal curvature Kq 0.0 (1/mm)
ﬁrstﬂl;gﬁcipal direction e, [o.géié 0.3874 0.0)T
second principal ditection | e, | [0.1820 — 0.4331 0.8827)7
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Appendix B. Contact Ellipse

Determination of Dimensions and Orientation of Instantaneous Contact Ellipse

The gear tooth surfaces are in point contact at every instant. Due to elastic deformation
of gear tooth surfaces the contact is spread over an elliptical area and the center of the ellipse
coincides with the instantaneous contact point. The bearing contact is formed as the set of
instantaneous contact ellipses.

The dimensions and orientation of the instantaneous contact ellipse can be determined
using the data about the principal curvatures and directions of the contacting surfaces, and
the elastic approach of the surfaces. The elastic approach depends on the applied load but
we will consider it as a given value that is known from experimental data.

The determination of the instantaneous contact ellipse is based on the following equations

(proposed by Litvin):

g1 — g2€os 20

(1) —
cos 2a (9 — 29192 cos20 + g3)1/2 (B1)
sin 2% = g25in20 (B2)
(92 — 2g19; cos 20 + g3)'/?
§ 1/2 § 1/2
where
1
A= 6 = #E) — (o} — 20102 cos 20 +47)""] (B4)
1
B= Z[xg) - ng) + (g2 — 29192 cos 20 + g2)/?) (B5)
o =) +6l) = nD ki) (B6)
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‘Here (fig. B1) o) is the angle that is formed by axis 7 of the contact ellipse with the unit
vector e(Il) of tﬁe principal direction on surface I;; o is the angle formed by unit vectors
e(Il) and e(f) of the principal directions of the contacting surfaces; 2a and 2b are the axes of
the contact ellipse; 6 is the elastic approach; and n(I‘) and K.(;[) are two principal directions of

tooth surface :.

Numerical Example

The input and output for the determination of the contact ellipse are shown in Tables

B1 and B2.

Table Bl Input Data

Description Symbol Values

pinion first principal curvature { «, -0.001543 (1/mm)
pinion second principal curvature Kq 0.03907 (1/mm)
pinion first principal direction e, [0.1751 — 0.4361 0.8827|7
pinion second principal direction e, [0.9222 0.3865 0.0080}7
gear first principal curvature Ky -0.007836 (1/mm)
gear second principal curvature K 0.0 (1/mm)

gear first principal direction e [-0.9219 —0.3874 0.0]T
gear second principal direction éh [—0.1820 0.4331 0.8827]T
elastic approach ) 0.007 (mm)

Table B2 Output Data

Description Symbol . Values
long axis of contact ellipse 2a | 6.026 (mm)
short axis of contact ellipse 2b 1.092 (mm)
angle between long axis and ot | 89.87 (deg)
the first principal direction of pinion
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Appendix C. Directions for Users of Application of Computer Program

C.1 Introduction

The name of the computer program is HELTCA.FOR. It is written in FORTRAN77
language. The operating system is CMS-9.0. A subroutine DNEQNTF to solve a system of
nonlinear equations should be a.vailable‘a in the Math-Library or working environment. The

subroutine is not included in the program. The program will call the subroutine DNEQNF

several times.

C.2 Input Block

The input block consists of three parts: (1) design parameters of pinion and gear; (2) the

controlled modification parameters; and (3) parameters for TCA.

Part 1. Design parameters of pinion and gear

In the beginning of the computer program, you can read the following lines:

C... All....COEFFICIENT FOR TRANSFORMATION OF DEGREE TO RADIAN
A11=DACOS(—1.D0)/180.D0

. KHD=1 FOR RIGHT-HAND PINION AND LEFT-HAND GEAR
. KHD=2 FOR LEFT-HAND PINION AND RIGHT-HAND GEAR

KHD=2

SYelo

If you write “KHD=1", the computer will use the necessary equations for the case of
right-hand pinion and left-hand gear. The computations will be accomplished for a left-
hand pinion and right-hand gear if you use “KHD=2".

Then, the variable definition for the pinion follows:

.. INPUT THE DESIGN PARAMETERS OF PINION

) NS GEAR NUMBER OF TEETH

- PNl NORMAL DIAMETRAL PITCH (1/MM)

. PSINI........NORMAL PRESSURE ANGLE (RAD.)

. BETAPI....HELICAL ANGLE ON PITCH CYLINDER (RAD.)
... ADCL........ADDENDUM (MM)

olsloelololole!
—
2,
p—t
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.. DEGl..uu..... DEDENDUM (MM)

. LAMDPI....LEAD ANGLE ON PITCH CYLINDER (RAD.)
. FWleeeo... FACE WIDTH (MM)

.. RPTIL.......... RADIUS OF PITCH CYLINDER (MM)

.. RBTl.ooooeens RADIUS OF BASE CYLINDER (MM)

. RATI.......... RADIUS OF ADDENDUM CYLINDER (MM)

.. RDTL..oeen.. RADIUS OF DEDENDUM CYLINDER (MM)
- PSITT........TRANSVERSE PRESSURE ANGLE (RAD.)
 LAMDBI...LEAD ANGLE ON BASE CYLINDER (RAD.)

SToYeYeletotoTotoYe
3
ey

In accordance with our numerical example (see Table 1), the following data would be

used:

TN1=20.D0
PN1=5.D0/25.4D0
PSIN1=A11*20.D0
LAMDP1=A11%60.D0
BETAP1=A11*30.D0
FW1=25.4D0*1.6D0
ADG1=1.D0/PN1
DEG1=1.25D0/PN1

The following variables are used for the gear:

.. INPUT THE DESIGN PARAMETERS OF GEAR

s S T GEAR NUMBER OF TEETH
" PN2ecore. NORMAL DIAMETRAL PITCH (1/MM)
. PSIN?.........NORMAL PRESSURE ANGLE (RAD.)
. BETAP2....HELICAL ANGLE ON PITCH CYLINDER (RAD.)
.. ADG2uuuun...... ADDENDUM (MM)
........... DEDENDUM (MM)

.. RPT2........... RADIUS OF PITCH CYLINDER (MM)

.. RBT2.......... RADIUS OF BASE CYLINDER (MM)

.. RAT2........... RADIUS OF ADDENDUM CYLINDER (MM)
.. RDT2........... RADIUS OF DEDENDUM CYLINDER (MM)
.. PSIT2.......... TRANSVERSE PRESSURE ANGLE (RAD.)
.. LAMDB2....LEAD ANGLE ON BASE CYLINDER (RAD.)

QQAONNaaaaQNNNAaNa
=)
t
Q)
(3]

From the design parameters listed in Table 1, we have
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TN2=100.D0
PN2=5.D0/25.4D0
A11=DACOS(—1.D0)/180.D0
PSIN2=A11*20.D0
LAMDP2=A11%60.D0
BETAP2=A11%30.D0
FW2=25.4D0*1.6D0
ADG2=1.D0/PN2
DEG2=1.25D0/PN2

If KHD=2, the computer program will change the values of some design parameters as

follows

C
IF(KHD.EQ.2) THEN
AMDP1=-LAMDP1
BETAP1=-BETAPI
LAMDP2=-LAMDP2
BETAP2=-BETAP2
ENDIF

The computer program call the following subroutines “DATAT1” and “DATAT2” to

calculate other tooth element proportions and output the whole data in file 55 (see below).

CALL DATATI1
CALL DATAT?2
Part 2. Control of modification parameter for application in the TCA program

At this stage we can read

C
C..... THE FOLLOWING DATA IS FOR THE TO-BE CONTROLLED MODIFICATION
PARAMETERS

C

C... AA... MODIFICATION PARAMETER OF GEAR

C... AP... MODIFICATION PARAMETER OF PINION RACK-CUTTER

C. DP... TANGENT POINT N OF PROFILES OF PINION & GEAR RACK-CUTTERS
C... THET2P. INITIAL ANGLE FOR MODIFICATION OF GEAR (RAD.)

You must input the four parameters for modification of pinion and gear surfaces, for

example:
AA=-0.0014D0
THET2P=-0.08D0
AP=-0.0008

DP=-DSIN(PSIN1)*DCOS(-1.D0)*RPT1/TN1/8.D0
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The above four controlling parameters should be tried several times is order to obtain

better contact pattern and transmission errors optimal for a given design.

Part 3. Parameters for TCA

In this part, the alignment errors expected should be input:

C
C PARAMETERS FOR TCA

C
C.. KM .. SWITCH 1 FOR CROSSING ANGLE A+, & 2 FOR INTERSECTION
ANGLE A,

C.. DGAM..ANGLE OF MISALIGNMENT(CROSSING OR INTERSECTION) (ARC
MINUTE)

8.. DEE... CHANGE OF CENTER DISTANCE (MM)

If a crossing angle of misalignment is considered, should input “KM=1". Input “KM=2"
if an intersection angle of misalignment is considered. For an aligned gear drive, input
“DGAM=0.0". For instance, if Ay, =4, AE =0, input the following lines:

' KM=1
C KM=2
DGAM=4.0*A11/60.D0
DEE=0.000D0

Then you will read the following sentence:

C
C.... THE INPUT BLOCK IS READY

Usually, you cannot make changes anything after this step.

C.3 Output Block

After the input block is filled out, you can read the following explanation for the output
files:

.. OUTPUT DATA FILES ARE THE FOLLOWINGS

... FILE 55... TOOTH PROPORTIONS OF PINION AND GEAR

.. FILE 85... CONTACT PATH ON PINION SURFACE (2D)

.. FILE 86... CONTACT PATH ON GEAR SURFACE (2D)

... FILE 87... LENGTH AND DIRECTIONS OF CONTACT ELLIPSE ON PINION
AND GEAR SURFACES (2D)

ololololeleole]
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C... FILE 90... TRANSMISSION ERRORS

1) File 55

In File 55 the information about the pinion and gear are listed.
2) Files 85 and 86

There are two coordinates in File 85 for each contact point of the pinion: Radial (z2+y2)*°
and axial z, . There are two coordinates in File 86 for each contact point of the gear: Radial
(22 + y2)°° and axial z,.
3) File 87

There are 5 values in File 87 for each pair of contact points of the pinion and gear. The
first one is the value of the major semi-axis of the contact ellipse. The second and third
values are the cosine directions of the major axis of the contact ellipse on the pinion tooth
surface. The last two values are the cosine direction of the major axis of the contact ellipse

on the gear tooth surface.

C.4 Computer Program
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Cevevrevevsessss TCA FOR MODIFIED HELICAL GEARS..................
PROGRAM HELTCA

IMPLICIT REAL*8(A-H,0-2)
REAL#*8 XI(9),X(9),F(9)
REAL*8 LF1(3,3),LH2(3,3),L1F(3,3),L2H(3,3)
REAL*8 R1F(3),R2F(3),N1F(3),N2F(3)
REAL*8 DPHI(2,180),DDPHI (2,180, 4)
REAL*8 ELAL(180),EL1(2,180),EL2(2,180)
REAL*8 LFH(3,3),LHF(3,3)
REAL*8 V1(3),V2(3),V3(3),V4(3),V5(3)
REAL*8 RG2(3),NG2(3)
REAL*8 RG1(3),NG1(3)
REAL*8 UI(3),UJ(3),UK(3)
REAL*8 LAMDP2, LAMDB2
REAL*8 LAMDP1,LAMDB1
REAL*8 UT2,KT21,KT22
REAL*8 AVC1(3),VTR1(3),AVC2(3),VTR2(3)
REAL*8 KSIG1,KSIG2,KFF,KHH
REAL*8 EFN(3),EHN(3),WLVT2(3),WV12(3), W2VT1(3),KF,KH,KS,KQ
REAL*8 KM2,KT2
REAL*8 KFP,KHP,KFG,KHG
COMMON /A300/ ES(3),EQ(3)
COMMON /A310/ KFF,KHH
COMMON /A340/ EFF(3),EHH(3)
COMMON /A360/ A,B,SI(3),FI(3)
COMMON/A200/ W1(3),W2(3),W12(3),VT1(3), VT2 (3),V12(3)
COMMON /A210/ EX(3), EF(3) EH(3)
COMMON /A212/ EF2(3),EH2(3),KF2,KH2
COMMON /A220/ KF,KH
COMMON /A230/ ET(3),EM(3)
COMMON /A380/ KS,KQ
COMMON /A400/ VT11(3),VT12(3),VT21(3), ,VT22(3)
COMMON /A401/ KHP,KFP,KHG,KFG
EXTERNAL FCNG,FCNC, FCNT
COMMON /AXIS/ UI,UJ,UK
COMMON /NET/ RR,DD
COMMON /DD/ DF,KPRI
COMMON /DATT2/ TN2,PN2,PSIN2,BETAP2,ADG2,DEG2,LAMDP2,
& UP2,FW2,RPT2,RBT2,RAT2,RDT2,PSIT2, LAMDB2
COMMON /DATT/ TN1,PN1,PSIN1,BETAP1,ADG1,DEG1,LAMDP1,
& FW1,RPT1,RBT1,RAT1,RDT1,PSIT1,LAMDB1
COMMON /B2/XNP1,YNP1, ZNP1,XNP2,YNP2, ZNP2
COMMON /B4/X1,Y1,Z1,XN1,YN1,ZN1
COMMON /B5/X2,Y2,22,XN2,YN2,ZN2
COMMON /B6/THET2P,DGPHI2
COMMON /W1/ ETAW1,UPP1,SPP1,ETAW2,UPP2,SPP2
COMMON /SG1/ RG1,NG1,AP,DP
COMMON /SG2/ RG2,NG2,AA
COMMON /ATT/ PHI1,PHI2,R1F,R2F,N1F,N2F,LFH,CC,DGAM,DPHI2
COMMON /MVT/ LF1,LH2
COMMON /AST/ ICONT
COMMON /ATS/ DPHI1
C... All.....COEFFICIENT FOR TRANSFORMATION OF DEGREE TO RADIAN
A11=DACOS(-1.D0)/180.D0
C... KHD=1 FOR RIGHT-HAND PINION AND LEFT-HAND GEAR
C... KHD=2 FOR LEFT-HAND PINION AND RIGHT-HAND GEAR
KHD=2
C... INPUT THE DESIGN PARAMETERS OF PINION
C... TNl........GEAR NUMBER OF TEETH
C... PNl........NORMAL, DIAMETRAL PITCH (MM)
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C... PSIN1......NORMAL PRESSURE ANGLE (RAD.)

C... BETAP1.....LEADING ANGLE OF THE HELIX ON PITCH CYLINDER (RAD.)
C... ADGl....... ADDENDUM (MM)

C... DEGl....... DEDENDUM (MM)

C... LAMDP1....HELIX ANGLE ON PITCH CYLINDER (RAD.)

Cc... FWl........FACE WIDTH (MM)

C... RPT1.......RADIUS OF PITCH CYLINDER (MM)

C... RBT1l.......RADIUS OF BASE CYLINDER (MM)

C... RAT1.......RADIUS OF ADDENDUM CYLINDER (MM)

C... RDT1.......RADIUS OF DEDENDUM CYLINDER (MM)

C... PSITl......TRANSVERSE PRESSURE ANGLE (RAD.)
C... LAMDB1l....HELIX ANGLE ON BASE CYLINDER (RAD.)
TN1=20.D0

PN1=5.D0/25.4D0
PSIN1=A11%20.D0
LAMDP1=A11%*60.D0
BETAP1=A11%*30.D0
FW1=25.4D0*1.6D0
ADG1=1.D0/PN1
DEG1=1.25D0/PN1
C... INPUT THE DESIGN PARAMETERS OF GEAR
C... TN2........GEAR NUMBER OF TEETH
C... PN2.........NORMAL DIAMETRAL PITCH (1/MM)
C... PSIN2.......NORMAL PRESSURE ANGLE (RAD.)
C... BETAP2......LEADING ANGLE OF THE HELIX ON PITCH CYLINDER (RAD. )
C... ADG2........ ADDENDUM (MM)
C... DEG2........ DEDENDUM (MM)
C... LAMDP2.....HELIX ANGLE ON PITCH CYLINDER (RAD.)
c... FW2.........FACE WIDTH (MM)
C... RPT2........RADIUS OF PITCH CYLINDER (MM)
C... RBT2........RADIUS OF BASE CYLINDER (MM)
C... RAT2........RADIUS OF ADDENDUM CYLINDER (MM)
C... RDT2........RADIUS OF DEDENDUM CYLINDER (MM)

C... PSIT2.......TRANSVERSE PRESSURE ANGLE (RAD.)
C... LAMDB2.....HELIX ANGLE ON BASE CYLINDER (RAD.)
TN2=100.D0O

PN2=5.D0/25.4D0
All1=DACOS(-1.D0)/180.D0
PSIN2=A11*20.DO
LAMDP2=A11%*60.D0
BETAP2=A11%*30.D0
FW2=25.4D0*1.6D0
ADG2=1.D0/PN2
DEG2=1.25D0/PN2
IF(KHD.EQ.2) THEN
LAMDP1=-LAMDP1
BETAP1=-BETAP1l
LAMDP2=-LAMDP2
BETAP2=-BETAP2
ENDIF
CALL DATAT1
CALL DATAT2
C... THE FOLLOWING IS FOR CONTROLLING PARAMETERS
C... AA... MODIFICATION PARAMETER OF GEAR
C... AP... MODIFICATION PARAMETER OF PINION RACK-CUTTER
C.. DP....TANGENT POINT N OF PROFILES OF PINION & GEAR RACK-CUTTERS
C.. THET2P..INITIAL ANGLE FOR MODIFICATION OF GEAR (RAD.)

C PARAMETERS FOR TCA
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C.. KM .. SWITCH 1 FOR CROSSING & 2 FOR INTERSECTING MISALIGNMENT
C.. DGAM..ANGLE OF DISALIGNMENT (CSOSSING OR INTERSECTING) (ARC MINUTE)
C.. DEE... CHANGE OF CENTER DISTANCE (MM)
KM=1
c KM=2
DGAM=0.DO
DEE=0.000D0
AA=-0.0014D0 R
THET2P=-0.08D0
AP=-0.0008
DP=-DSIN (PSIN1) *DCOS (~1.D0) *RPT1/TN1/8.D0
C... THE INPUT BLOCK IS OVER HERE

C... OUPTPUT DATA FILES ARE THE FOLLOWINGS

C... FILE 55... TOOTH PROPORTIONS OF PINION AND GEAR
C... FILE 85... CONTACT PATH ON PINION SURFACE (2D)
C... FILE 86... CONTACT PATH ON GEAR SURFACE (2D)
C... FILE 87... DIRECTIONS OF LONG AXIS OF CONTACT ELLIPS (2D)
C... FILE 90 ...TRANSMISSION ERRORS
DO 901 I=1,3
UI(I)=0.DO
UJ(I)=0.DO
UK(I)=0.DO
901 CONTINUE
UI(1)=1.DO
UJ(2)=1.D0
UK(3)=1.D0
C .. EE2..... GEAR RATIO
EE2=TN1/TN2
C..CCeovo.. CENTER DISTANCE OF GEAR DRIVE
CC=RPT1+RPT2+DEE ,
C .. CALCULATE CONTACT POINT ON MEAN SECTION WITHOUT MISALIGNMENT
ICONT=1
N=6
ERRREL=0.1D-6
ITMAX=1000

CALL MIAL(KM,0.D0,LFH)

XI(1)=0.DO
XI(2)=0.D0
XI(3)=0.DO
XI(4)=0.DO
XI(5)=0.D0
XI(6)=0.DO
DD=0.DO

CALL DNEQNF (FCNG, ERRREL, N, ITMAX, XI , X, FNORM)
PHISS1=X(6)
PHI1IMEA=X(6)

C .. CALCULATE CONTACT POINT ON EDGE SECTION WITHOUT MISALIGNMENT
DD=-0.5D0*FW1l e e S -
ERRREL=0.1D-8
CALL DNEQNF (FCNG, ERRREL, N, ITMAX, XI, X, FNORM)

PHISS2=X(6)
C .. CALCULATE CONTACT POINT ON EDGE SECTION WITH MISALIGNMENT
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N=6
ERRREL~=0.1D-6
ITMAX=1000

CALL MIAL(KM,DGAM,LFH)

XI(1)=X(1)
XI(2)=X(2)
XI(3)=X(3)
XI(4)=X(4)
XI (5)=X(5)
XI(6)=X(6)

c

CALL DNEQNF (FCNG, ERRREL,N, ITMAX,XT, X, FNORM)
c
1330 CONTINUE
PHI1=X(6)
PHI1STA=X(6)
C .. THE FOLLOWING IS FOR TCA
ICONT=2
N=5
ERRREL=0.1D-5
ITMAX=400
STP=(PHISS2-PHISS1) /36.D0
NN=72
DO 1010 I=1,NN
PHI1=PHI1STA~-(I-1) *STP
XI(1)=X(1)
XI (2)=X(2)
XI(3)=X(3)
XI(4)=X(4)
XI(5)=X(5)

CALI DNEQNF (FCNG, ERRREL,N, ITMAX, XI, X, FNORM)

IF (RG1(3) .GT. (0.5D0*FW1)) GO TO 1011

C... ROTATING VELOCITY OF CUTTER IN CUTTER SYSTEM
W1(1)=0.DO
W1(2)=0.DO
W1(3)=0.D0 _

C... ROTATING VELOCITY OF PINION IN CUTTER SYSTEM
W2 (1)=0.DO
W2(2)=0.D0
W2(3)=1.D0

C... NORMAL OF CUUTER IN CUTTER SYSTEM
EX (1)=XNP1
EX(2)=YNP1
EX(3)=2ZNP1

C... TRANSFER VELOCITIES OF CUTTER AND PINION IN CUTTER SYSTEM
CALL EQVEC(VT1,VT11)
CALL EQVEC(VT2,VT12)

C... RELATIVE VELOCITIS OF CUTTER WRT. PINION IN CUTTER SYSTEM
CALL ADDVEC(W12,W1,W2,-1.D0)
CALL ADDVEC(V12,VT1,VT2,-1.D0).
KF=KFP
KH=KHP

C... PRINCIPAL CURVATUTES AND DIRECTIONS OF PINION
CALL CURVT(1)

C... PRINCIPAL DIRECTIONS OF PINION IN PINION SYSTEM
CALL EQVEC (EFF,ES)
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C...

C---

C...

c'.'

C...

c.-o

C..'

c.oo

C...

c...

CALL EQVEC (EHH, EQ)

ROTATING VELOCITY OF CUTTER IN CUTTER SYSTEM
W1(1)=0.DO
W1(2)=0.DO
W1(3)=0.D0

ROTATING VELOCITY OF GEAR IN CUTTER SYSTEM
W2(1)=0.DO
W2(2)=0.D0
W2 (3)=-DGPHI2

NORMAL OF CUUTER IN CUTTER SYSTEM
EX(1)=XNP2
EX(2)=YNP2
EX(3)=2ZNP2

TRANSFER VELOCITIES OF CUTTER AND PINION
CALL EQVEC(VT1,VT21)

RELATIVE VELOCITIS OF CUTTER WRT. GEAR IN CUTTER SYSTEM

CALL ADDVEC(W12,W1,W2,-1.D0)
CALL ADDVEC(V12,VT1,VT2,-1.D0)
KF=KFG
KH=KHG
PRINCIPAL CURVATUTES AND DIRECTIONS OF PINION
CALL CURVT(2)
PRINCIPAL DIRECTIONS OF PINION IN PINION SYSTEM
TRANSM (L1F, LF1)
MAVEC (V1,LH2, ES)
MAVEC(V2,LFH, V1)
MAVEC (ES, L1F,V2)
MAVEC (V1,LH2, EQ)
MAVEC (V2,LFH, V1)
MAVEC (EQ,L1F,V2)
ELLIPSES
ELLIP
ELAL(I)=A
AXIS OF PINION ELLIPSE ON TANGENT PLANE
CALL EQVEC( V1,SI)
CALL DOTVEC(V1N,V1,V1)
EL1(1,I)=DSQRT (V1 (1) **2+V1(2)**2/V1N)
EL1(2,I)=V1(3)/DSQRT(VIN)
AXIS OF GEAR ELLIPSE ON TANGENT PLANE
TRANSM (LHF , LFH)
TRANSM (L2H, LH2)
MAVEC (V2,LF1,V1)
MAVEC (V1,LHF,V2)
MAVEC (V2,L2H,V1)
EQVEC(V1,V2)
DOTVEC (V1IN,V1,V1) ~
EL2(1,I)=-DSQRT (V1 (1) **2+V1(2) **2/V1N)
EL2(2,I)=V1(3)/DSQRT(V1N) '
AG1=DATAN (EL1(2,I)/EL1(1,I))/Al1
AG2=DATAN(EL2(2,I)/EL2(1,I))/A11
DPHI (1,I)=PHI1 B
DPHI (2,I)=PHI2-TN1/TN2*PHI1
DDR1=DSQRT (RG1 (1) **2+RG1 (2) **2)
DDR2=DSQRT (RG2 (1) **2+RG2 (2) #*2) -210.D0
KM=4

FREREEE

3

CONTA

:

EREREED
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1010
1011

1090

1030
1020

1050

1040

1060

C

OU1=FLOAT (I-1) /FLOAT (KM)
OUP=AINT (OU1)
IF(OU1.EQ.OUP) THEN
WRITE(85,*) DDR1,RG1(3)
WRITE(86,*) DDR2,RG2(3)
WRITE(87,*) ELAL(I),EL1(1,I),EL1(2,I),EL2(1,I),EL2(2,I)
ENDIF
CONTINUE
CONTINUE
AD=-10000.D0
DO 1090 I=1,NN,KM
IF(DPHI(2,I).NE.0.DO) THEN
IF(DPHI(2,I).GT.AD) THEN
AD=DPHI (2,I)
ENDIF
ENDIF
CONTINUE
S5=360.D0/TN1
DO 1020 J=1,4
DO 1030 I=1,NN,KM
BD=(DPHI (2,I)-AD) /A11#3600.D0
DDPHI(1,I,J)=DPHI(1,I)/A11+5S*(J~1)
DDPHI (2,I,J)=BD
CONTINUE
CONTINUE
KM=4
DO 1040 J=1,4
DO 1050 I=1,NN,KM
- IF(DDPHI(1,I,J).NE.0.DO) THEN
WRITE(90,*) DDPHI(1,I,J),DDPHI(2,I,J)
ENDIF
CONTINUE
CONTINUE
KM=4
DO 1060 I=1,NN,KM
WRITE(87,*) ELAL(I),ELi(1,I),EL1(2,I),EL2(1,I),EL2(2,I)
CONTINUE
WRITE(6,*) ’#*%**%* DROGRAM FINISHED #k#wkk#/
STOP
END

C ...THE SUBROUTINE IS FOR TCA

C...

SUBROUTINE FCNG(X,F,N)

IMPLICIT REAL*8(A-H,0-2)

REAL#*8 X(N),F(N)

REAL*8 LF1(3,3),LH2(3,3),LFH(3,3)

REAL*8 R1F(3),R2F(3),N1F(3),N2F(3),CO(3)

REAL*8 AVC1(3),VTR1(3),AVC2(3),VITR2(3)

REAL*8 UI(3),UJ(3),UR(3),V1(3),V2(3),V3(3),V4(3),V5(3)
REAL*8 UP, LAMDP, LAMDB

REAL*8 KF2,KH2

REAL*8 KFP,KHP,KFG,KHG

COMMON /AXIS/ UI,UJ,UK

COMMON /SG1/ RG1,NG1,AP,DP

COMMON /SG2/ RG2,NG2,AA

COMMON /ATT/ PHI1,PHI2,R1F,R2F,N1F,N2F,LFH,CC,DGAM,DPHI2
COMMON /AST/ ICONT

COMMON /MVT/ LF1,LH2

REAL*8 KSIG1,KSIG2,KFF,KHH
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REAL*8 EFN(3),EHN(3),W1VT2(3),WV12(3),W2VT1(3),KF,KH,KS,KQ
REAL*8 KM2,KT2
COMMON /A300/ ES(3),EQ(3)
COMMON /A310/ KFF,KHH
COMMON /A340/ EFF(3),EHH(3)
COMMON /A340/ EF1(3),EH1(3).
COMMON /A360/ A,B,SI(3),FI(3)
COMMON/A200/ W1(3),W2(3),W12(3),VT1(3),VT2(3),V12(3)
COMMON /A210/ EX(3),EF(3),EH(3)
COMMON /A212/ EF2(3),EH2(3),KF2,KH2
COMMON /A220/ KF,KH
COMMON /A230/ ET(3),EM(3)
COMMON /A380/ KS,KQ
COMMON /A400/ VT11(3),VT12(3),VT21(3),VT22(3)
COMMON /A401/ KHP,KFP,KHG,KFG
REAL*8 RG1(3),NG1(3)
REAL*8 RG2(3),NG2(3)
REAL*8 LAMDP2, LAMDB2
REAL*8 LAMDP1,LAMDB1
COMMON /DATT2/ TN2,PN2,PSIN2,BETAP2,ADG2,DEG2,LAMDP2,
& UP2,FW2,RPT2,RBT2,RAT2,RDT2,PSIT2, LAMDB2
COMMON /B2/XNP1,YNP1,2NP1,XNP2,YNP2, ZNP2
COMMON /B4/X1,Y1,Z1,XN1,¥N1,ZN1
COMMON /B5/X2,Y¥2,22,XN2,¥YN2,ZN2
COMMON /B6/THET2P, DGPHI2 '
COMMON /W1/ ETAW1,UPP1,SPP1,ETAW2,UPP2, SPP2
COMMON /NET/ RR,DD
COMMON /DATT/ TN1,PN1,PSIN1,BETAP1,ADG1,DEG1,LAMDP1,
& FW1,RPT1,RBT1,RAT1,RDT1,PSIT1,LAMDB1
UPP1=X(1)
ETAW1=X(2)
UPP2=X(3)
ETAW2=X (4)
PHI2=X(5)
IF(ICONT.EQ.1) THEN
PHI1=X(6)
ENDIF
RPT=RPT1
CNST=DARCOS (-1.0D00) /180.0
PI=DARCOS (-1.0D00)
PI2=2.D0*PI
PSIT= PSIT1
PSIN= PSIN1
BETAP= BETAP1
DSIN1=DSIN (ETAW1)
DCOS1=DCOS (ETAW1)
ANF1=DARCOS (RBT1/RPT1)
CINV1=DTAN (ANF1) -ANF1
ANG1=PI/2.D0O/TN1
AM=PI/PN1/4.DO
SA=AM*DCOS (BETAP)
§S1= RPT1* (ETAW1)
DSS1= RPT1
C... EQUATION OF MESHING OF PINION
FF1=SPP1*DSIN (BETAP)
FF2=(- (UPP1+DP) -2. DO*AP**Z*UPPl**S)
FF3=DSIN (PSIN) +2.D0*AP*UPP1*DCOS (PSIN)
F5=FF2/FF3*DCOS (BETAP) -SA-RPT1*ETAW1
SPP1= F5/DSIN(BETAP)
C... SURFACE OF PINION RACK CUTTER



c---

C

Cc

XP=(UPP1+4DP) *DCOS (PSIN)
YP=( (UPP1+DP) *DSIN (PSIN)+AM) *DCOS (BETAP) +
& AP*UPP1*%2*DCOS (PSIN) *DCOS (BETAP)+SPP1*DSIN (BETAP)
ZP=-( (UPP1+DP) *DSIN (PSIN) +AM) *DSIN (BETAP) -
& AP*UPP1**2+DCOS(PSIN)*DSIN(BETAP)+SPP1*DCOS (BETAP)
X1= DCOS(ETAW1l) *XP+DSIN(ETAW1) *YP+RPT1*DCOS (ETAW1)
&+SS1*DSIN (ETAW1)
Y1=-DSIN(ETAW1l) *XP+DCOS (ETAW1) *YP-RPT1*DSIN (ETAW1)
&+SS1*DCOS (ETAW1)
Z21=2ZP
NORMAL OF RACK CUTTER
PNN=DSQRT (1.D0+(2.DO*AP*UPP1) **2)
XNPP=-2.DO*AP*UPP1/PNN
YNPP=1.DO0O/PNN
ZNPP=0.D0
XNP1=(DCOS (PSIN) *XNPP~DSIN (PSIN) *YNPP)
YNP1=(DSIN (PSIN) *DCOS (BETAP) *XNPP+DCOS (PSIN) *DCOS (BETAP) *YNPP)
ZNP1=(-DSIN(PSIN) *DSIN(BETAP) *XNPP-DCOS (PSIN) *DSIN (BETAP) *YNPP)
NORMAL OF PINION IN S1 .
XN1= DCOS(ETAW1) *XNP1+DSIN (ETAW1) *YNP1
YN1=-DSIN (ETAW1l)} *XNP1+DCOS (ETAW1l) *YNP1
ZN1= ZNP1l
DX1=-DSIN (ETAW1) *XP+DCOS (ETAW1) *YP+SS1*DCOS (ETAW1)

DY1=-DCOS (ETAW1) *XP-DSIN (ETAW1) *YP-SS1*DSIN (ETAW1)
DZ1=0.D0

RG1(1)=X1
RG1(2)=Y1
RG1(3)=21
NG1(1)=XN1
NG1(2)=Y¥YN1
NG1(3)=2ZN1
KHP=0.D0 , _
KFP=2.DO0*AP/ (DSQRT ( (1.D0+(2.DO*AP*UPP1) *#*2) ) **3)
EF1(1)=DCOS (PSIN)
EF1 (2)=DSIN (PSIN)*DCOS (BETAP)
EF1 (3)=-DSIN(PSIN) *DSIN (BETAP)
EH1(1)=0.DO
EH1(2)= DSIN(BETAP)
EH1(3)= DCOS (BETAP)
EF (1)= DCOS (ETAW1) *EH1 (1) +DSIN (ETAW1) *EH1(2)
EF (2)=-DSIN(ETAW1) *EH1 (1) +DCOS (ETAW1) *EH1 (2)
EF(3)= EH1(3)
EH(1)= DCOS (ETAW1) *EF1 (1) +DSIN(ETAW1) *EF1 (2)
EH(2)=-DSIN(ETAW1) *EF1(1)+DCOS (ETAW1) *EF1 (2)
EH(3)= EF1(3)
VELOCITY OF RACK-CUTTER IN SP
VT11(1)=0.DO
VT11(2)=RPT1
VT11(3)=0.D0
VELOCITY OF PINION IN SP
VT12 (1)=-(YP+SS1)
VT12(2)= XP+RPT1
VT12(3)=0.DO.
RPT=RPT2
PSIT= PSIT2
PSIN= PSIN2
BETAP= BETAP2
§S2= RPT2* (ETAW2/TN2*TN1)
DSS2= RPT2/TN2*TN1
TTD=AA#* (ETAW2-THET2P) **2
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DTP=2.DO*AA* (ETAW2-THET2P)
GPHI2= ETAW2/TN2*TN1-TTD
DGPHI2= 1.D0/TN2*TN1-DTP
C... EQUATION OF MESHING OF GEAR
GG1=SPP2#DSIN (PSIN2) *DSIN (BETAP2)
GG1=DSIN(PSIN2) *DSIN (BETAP2)
GG2=(UPP2+DP) *DCOS (BETAP2)
GG3= RPT2+TN1/TN2*ETAW2*DSIN(PSIN2) =~ -
GG4=SA*DSIN (PSIN2)
GGS= 2.DO*AA+TN2* (ETAW2-THET2P) *RPT2*DCOS (PSIN2) *DCOS (BETAP2)
GG6= TN1-2.DO*AA*TN2* (ETAW2-THET2P)
SPP2=~ (GG2+GG3+GG4+GG5/GG6) /GG1
C... SURFACE OF GEAR RACK CUTTER
XP= (UPP2+DP) *DCOS (PSIN)
YP=( (UPP2+DP) *DSIN (PSIN) +AM) *DCOS (BETAP) +SPP2*DSIN (BETAP)
ZP=- ( (UPP2+DP) *DSIN (PSIN)+AM) *DSIN (BETAP) +SPP2*DCOS (BETAP)
X2=-DCOS (GPHI2) *XP+DSIN (GPHI2) *YP+RPT2*DCOS (GPHI2)
&+SS2*DSIN (GPHI2)
Y2=-DSIN (GPHI2) *XP-DCOS (GPHI2) *YP+RPT2*DSIN (GPHI2)
&-SS2+*DCOS (GPHI2)
22=2P
C... NORMAL OF RACK CUTTER IN SW
' XNP2=DSIN(PSIN)
¥YNP2=-DCOS (PSIN) *DCOS (BETAP)
ZNP2= DCOS (PSIN) *DSIN (BETAP)
XNP2=-DSIN (PSIN)
YNP2= DCOS (PSIN) *DCOS (BETAP)
ZNP2=-DCOS (PSIN) *DSIN (BETAP)
C .. NORMAL OF GEAR IN S2
XN2=-DCOS (GPHI2) *XNP2+DSIN (GPHI2) *YNP2
YN2=-DSIN(GPHI2) *XNP2-DCOS (GPHI2) *YNP2
ZN2= ZNP2
DX2=(DSIN (GPHI2) *XP+DCOS (GPHI2) *YP-RPT2*DSIN (GPHI2) +
£SS2*DCOS (GPHI2) ) *DGPHI2+DSS2*DSIN (GPHI2)
DY2=(-DCOS (GPHI2) *XP+DSIN (GPHI2) *YP+RPT2*DCOS (GPHI2) +
£SS2*DSIN (GPHI2) ) *DGPHI2-DS52*DCOS (GPHI2)
DZ2=0.D0
RG2 (1) =X2
RG2 (2)=Y2
RG2(3)=22
NG2 (1) =XN2
NG2 (2)=YN2
NG2 (3)=2ZN2
KFG=0.D0
KHG=0.D0
EF2 (1) =DCOS (PSIN)
EF2 (2) =DSIN(PSIN) *DCOS (BETAP)
EF2 (3) =-DSIN (PSIN) *DSIN (BETAP)
EH2 (1) =0.D0
EH2 (2)= DSIN(BETAP)
EH2 (3)= DCOS (BETAP)
c VELOCITY OF RACK-CUTTER IN SG
VT21(1)=0.D0
VT21(2)= RPT1
VT21(3)=0.D0
c VELOCITY OF GEAR
VT22 (1) =- (YP+552) *DGPHI2
VT22(2)= (XP+RPT2)*DGPHI2
. VT22(3)=0.D0
S1=DSIN(PHI1)



Co-o
C...
c...

110

C1=DCOS (PHI1)
S2=DSIN(PHI2)
C2=DCOS (PHI2)
LF1(1,1)=C1
LF1(1,2)=S1
LF1(2,1)=-S1
LF1(2,2)=C1
LF1(1,3)=0.DO0
LF1(2,3)=0.D0
LF1(3,1)=0.D0
LF1(3,2)=0.D0
LF1(3,3)=1.D0
LH2(1,1)=C2
LH2(1,2)=-52
LH2(2,1)=S2
LH2 (2,2)=C2
LH2 (1,3)=0.D0
LH2 (2,3)=0.D0
LH2(3,1)=0.D0
LH2(3,2)=0.D0
LH2(3,3)=1.D0

CALL MAVEC(V1,LH2,NG2)
CALL MAVEC (N2F,LFH,V1)
CALL MAVEC(V2,LH2,RG2)
CALL MAVEC(V3,LFH,V2)
CALL ADDVEC(R2F,V3,UI,CC)
CALL MAVEC(N1F,LF1,NG1)
CALL MAVEC(R1F,LF1,RG1)
F(1)=(R1F (1) -R2F(1))
F(2)=(R1F(2)-R2F(2))
F(3)=(R1F(3)=-R2F(3))
F(4)=N1F (1) -N2F (1)
F(5)=N1F (2) -N2F(2)
IF(ICONT.EQ.1) THEN

F(6)=Z1-DD
ENDIF
RETURN
END

FOR PINION DATA **

SUBROUTINE DATAT1
IMPLICIT REAL*8(A-H,0-2)
REAL*8 UP,LAMDP1,LAMDB1

COMMON /DATT/ TN1,PN1,PSIN1l,BETAP1,ADG1l,DEGl,LAMDP],
& FW1,RPT1,RBT1,RAT1,RDT1,PSIT1,LAMDB1

RPT1=TN1/ (2.D0*PN1*DCOS (BETAP1l))
PSIT1=DATAN (DTAN (PSIN1) /DCOS (BETAP1))

RBT1=RPT1*DCOS (PSIT1)
RAT1=RPT1+ADG1
RDT1=RPT1-DEG1

LAMDB1=DATAN (DTAN (LAMDP1) /DCOS (PSIT1))
BETAB1=DATAN (DTAN (BETAP1) *DCOS (PSIT1))

WRITE(55,110)

FORMAT(/zx’ Thbkkhdkhkdkddhhhdkdhkhhhhdhdhrhhhhdbhkhhdkhdkkks /

& 2X,’*

DATA OF PINION *,/

& 2X, T hkkkkkhhhhkkhhkhkhdkhhkhkhhkkdhhdhdkhhhrhkkd/ /)
WRITE(55,120) TN1,PN1,PSIN1,BETAP1,ADGl,DEG1,LAMDP1,FW1,
& RPT1,RBT1,RAT1,RDT1,PSIT1,LAMDB1

120 FORMAT (2X, 'GEAR NUMBER OF TEETH TN1=’,Fl14.7/
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&2X, ’NORMAL DIAMETRAL PITCH (1/MM) PN1=’,Fl4.7/

&2X, 'NORMAL PRESSURE ANGLE (RAD.) PSIN1=’,F14.7/
&2X, ’LEADING ANGLE OF HELIX'’ /

&4X,’ON PITCH CYLINDER (RAD.) BETAP1=’,F14.7/
&2X, ' ADDENDUM (MM) ADGl=’,Fl4.7/
&2X, 'DEDENDUM (MM) DEG1=’',F14.7/
&2X, 'HELIX ANGLE ON PITCH CYLINDER(RAD) LAMDP1=',F14.7/
&2X,'FACE WIDTH (MM) FWl=‘,F14.7/

&2X, 'RADIUS OF PITCH CYLINDER (MM) RPT1=/,F14.7/
&2X, 'RADIUS OF BASE CYLINDER (MM) RBT1=',F14.7/
&2X, 'RADIUS OF ADDENDUM CYLINDER (MM) RAT1=',F14.7/
&2X, 'RADIUS OF DEDENDUM CYLINDER (MM) RDT1=',Fl4.7/
&2X, 'TRANSVERSE PRESSURE ANGLE (RAD> PSIT1=',F14.7/
&2X, 'HELIX ANGLE ON BASE CYLINDER (RAD) LAMDB1=',F14.7/)
Cevn
RETURN
END
Ceen
C ...THE SUBROUTINE IS FOR DATA OF THEORITICAL GEAR SURFACE
Cove
SUBROUTINE DATAT2
IMPLICIT REAL*8(A-H,0-2)
REAL*8 UP2,LAMDP2,LAMDB2
COMMON /DATT2/ TN2,PN2,PSIN2,BETAP2,ADG2,DEG2,LAMDP2,
& UP2,FW2,RPT2,RBT2,RAT2,RDT2,PSIT2,LAMDB2
RPT2=TN2/ (2.DO*PN2*DCOS (BETAP2) )
PSIT2=DATAN (DTAN (PSIN2) /DCOS (BETAP2))
RBT2=RPT2*DCOS (PSIT2)
RAT2=RPT2+ADG2
RDT2=RPT2-DEG2
LAMDB2=DATAN (DTAN (LAMDP2) /DCOS (PSIT2))
BETAB2=DATAN (DTAN (BETAP2) *DCOS (PSIT2) )

DEL2=0.007
C WRITE(6,110)
WRITE(55,110)
110 FORMAT (/2X, ' *kkkkukkhdkhhhhdhdhhhhhhhddhhhhhbhhhhohnn/ /
& 2X,'* DATA OF GEAR 2 xr
&

2x' Thhkkhhhkdhhdhhkdhhhhhkdkhhhhkhkhkhhdhhkhkhhhhdkhkk’ P /)

WRITE(55,120) TN2,PN2,PSIN2,BETAP2,ADG2,DEG2,LAMDP2,
& FW2 ,RPT2,RBT2,RAT2,RDT2,PSIT2,LAMDB2,DEL2

120 FORMAT(2X,’GEAR NUMBER OF TEETH TN2=',F14.7/
&2X, 'NORMAL DIAMETRAL PITCH (1/MM) PN2=’,F14.7/
&2X, 'NORMAL PRESSURE ANGLE  (RAD.) PSIN2=',F14.7/
&2X, 'LEADING ANGLE OF HELIX’ /

&4X,’ON PITCH CYLINDER (RAD) BETAP2=/,F14.7/
&2X,  ADDENDUM (MM) ADG2=',F14.7/
&2X, ' DEDENDUM (MM) DEG2=’,F14.7/
&2X, 'HELIX ANGLE ON PITCH CYLINDER(RAD) LAMDP2=’,F14.7/
&2X, 'FACE WIDTH (MM) FW2=',F14.7/
£2X, 'RADIUS OF PITCH CYLINDER (MM) RPT2=',F14.7/
£2X, 'RADIUS OF BASE CYLINDER (MM) RBT2=',F14.7/

&2X, 'RADIUS OF ADDENDUM CYLINDER (MM) RAT2=’,Fl14.7/
&2X, 'RADIUS OF DEDENDUM CYLINDER (MM) RDT2=’,F14.7/
&2X, "TRANSVERSE PRESSURE ANGLE (RAD.) PSIT2=’,F14.7/
&2X, 'HELIX ANGLE ON BASE CYLINDER(RAD) LAMDB2=’,F14.7/

&2X, 'ELASTIC APPROACH (MM) DEL=’,F14.7)
c'.'

RETURN

END
C...
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C...
C...

101

C..-
Coo'
c---

102

Ceve

ADDITION OF TWO VECTORS

SUBROUTINE ADDVEC(VA,VB,VC,DD)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 VA(3),VB(3),VC(3)
DO 101 I=1,3

VA (I)=VB(I)+DD*VC(T)
CONTINUE
RETURN
END

DOT PRODUCT OF TWO VECTOR

SUBROUTINE DOTVEC(AA,VA,VB)
IMPLICIT REAL#*8 (A-H,0-2)
REAL*8 VA(3),VB(3)

=0.D0
DO 102 I=1,3

AA=AA+VA (I)*VB(I)
CONTINUE
RETURN
END

C... CROSS PRODUCT OF TWO VECTOR

c'co

C...

SUBROUTINE CROVEC (VA,VB,VC)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 VA(3),VB(3),VC(3)
VA(1)=VB(2) *VC(3)-VB(3) *VC(2)
VA(2)=VB(3)*VC(1)=VB (1) *VC(3)
VA(3)=VB(1)*VC(2)-VB(2)*VC (1)
RETURN

END

C... PRODUCT OF MATRIX AND A VECTOR

C...

104
103

C...
C.C L]
c. L ]

105

C...
C...

SUBROUTINE MAVEC (VA,MC,VB)
IMPLICIT REAL#*8 (A-H,0-2)
REAL*8 MC(3,3),VA(3),VB(3)
DO 103 I=1,3
VA(I)=0.0
DO 104 J=1,3
VA(I)=MC(I,J)*VB(J)+VA(I)
CONTINUE
CONTINUE
RETURN
END

PRODUCT OF A VECTOR AND A SCALAR

SUBROUTINE PDSVEC(VA,VB,T)
IMPLICIT REAL*8 (A-H,0-2)
REAL#*8 VA(3),VB(3)
DO 105 I=1,3
VA (I)=T*VB(I)
CONTINUE
RETURN
END

STANDARDIZATION OF A VECTOR
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Cone
SUBROUTINE STDVEC(VA,VB)
IMPLICIT REAL*8 (A-H,0-2Z)
REAT*8 VA(3),VB(3)
CC=0.D0O
DO 106 I=1,3
CC=CC+VB(I) **2
106 CONTINUE
CN=DSQRT (CC)
DO 107 I=1,3
. VA(I)=VB(I)/CN
107 CONTINUE
" RETURN
END
C...
C... INPUT A VECTOR TO ANOTHER VECTOR
c...
SUBROUTINE EQVEC(VA,VB)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 VA(3),VB(3)
DO 108 I=1,3
VA(I)=VB(I)
108 CONTINUE
RETURN
END
Cene
C... TRIPLE PRODUCT OF THREE VECTORS
C...
SUBROUTINE TRIVEC(AA,VA,VB,VC)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 VA(3),VB(3),VC(3),V(3)
CALL CROVEC(V,VB,VC)
CALL DOTVEC(AA,VA,V)
RETURN
END
C...
C... TRANSFOR MATRIX
C...
SUBROUTINE TRANSM(AA, BB)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 AA(3,3),BB(3,3)
AA(1,1)=BB(1,1)
AA(1,2)=BB(2,1)
AA(1,3)=BB(3,1)
AA(2,1)=BB(1,2)
AA(2,2)=BB(2,2)
An(2,3)=BB(3,2)
AA(3,1)=BB(1,3)
AA(3,2)=BB(2,3)
AA(313)=BB(313)
RETURN
END
C... h
C... PRODUCT OF TWO MATRICES
C...
SUBROUTINE MAPMA(AA,BB,CC)
IMPLICIT REAL*8 (A-H,0-2Z)
REAL*8 AA(3,3),BB(3,3),CC(3,3)
AA(1,1)=BB(1l,1)*CC(1,1)+BB(1,2)*CC(2,1)+BB(1,3)*CC(3,1)
AA(1,2)=BB(1,1)*CC(1,2)+BB(1,2)*CC(2,2)+BB(1,3)*CC(3,2)
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AA(1,3)=BB(1,1)*CC(1,3)+BB(1,2)*CC(2,3)+BB(1,3)*CC(3,3)
AA(2,1)=BB(2,1)*CC(1,1)+BB(2,2)*CC(2,1)+BB(2,3)*CC(3,1)
AA(2,2)=BB(2,1)*CC(1,2)+BB(2,2)*CC(2,2)+BB(2,3)*CC(3,2)
AA(2,3)=BB(2,1)*CC(1,3)+BB(2,2)*CC(2,3)+BB(2,3)*CC(3,3)
AA(3,1)=BB(3,1)*CC(1,1)+BB(3,2)*CC(2,1)+BB(3,3)*CC(3,1)
AA(3,2)=BB(3,1)*CC(1,2)+BB(3,2)*CC(2,2)+BB(3,3)*CC(3,2)
AA(3,3)=BB(3,1)*CC(1,3)+BB(3,2)*CC(2,3)+BB(3,3)*CC(3,3)

RETURN

END
c.' -
C... THE SUBROUTINE IS FOR MISALIGMENT

SUBROUTINE MIAL (K,DGAMM,LFH)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 LFH(3,3)

S3=DSIN (DGAMM)
C3=DCOS (DGAMM)

C ** FOR CROSSING ANGLE MISALIGNMENT

IF(K.EQ.1) THEN
LFH(1,1)=-1.D0
LFH(1,2)=0.D0
LFH(1,3)=0.D0
LFH(2,1)=0.D0
LFH(2,2)=-C3
LFH(2,3)=-53
LFH(3,1)=0.D0
LFH(3,2)=-53
LFH(3,3)=C3

ENDIF

C ** FOR INTERSECTING ANGLE MISALIGNMENT

IF (K.EQ.2) THEN
LFH(1,1)=~C3
LFH(1,2)=0.D0
LFH(1,3)=S3
LFH(2,1)=0.D0
LFH(2,2)=-1.D0
LFH(2,3)=0.D0
LFH(3,1)=S3
LFH(3,2)=0.D0
LFH(3,3)=C3

ENDIF
C
RETURN
END
c
C .... COMPUTE THE PRINCIPAL CURVATURES OF MODIFIED cutter SURFACE
(o

SUBROUTINE CURVT (KK)

IMPLICIT REAL*8(A-~H,0-2)

REAL*8 EFN(3),EHN(3),W1VT2(3),WV12(3),W2VT1(3),KF,KH,KS,6KQ
REAL*8 KM2,KT2,KFF,KHH

COMMON/A200/ W1(3),W2(3),W12(3),VT1(3),VT2(3),V12(3)
COMMON /A210/ EX(3),EF(3),EH(3)

COMMON /A220/ KF,KH

COMMON /A230/ ET(3),EM(3)

COMMON /A300/ ES(3),EQ(3)

COMMON /A310/ KFF,KHH

COMMON /A380/ KS,KQ

EFN(1)= EX(2)*EF(3)~-EX(3)*EF(2)
EFN(2)=-(EX (1) *EF (3) -EX(3) *EF (1))

EFN(3)= EX(1)*EF(2)-EX(2)*EF(1)
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EHN(1)= EX(2)*EH(3)-EX(3)*EH(2)
EHN(2)=-(EX (1) *EH(3) -EX(3) *EH(1))
EHN(3)= EX(1)*EH(2)-EX(2)*EH(1)
W1VT2(1)= W1(2)*VT2(3)-W1(3)*VT2(2)
W1VT2(2) == (W1 (1) *VT2(3)-W1(3)*VT2(1)) .
W1VT2(3)= W1(1)*VT2(2)-W1(2)+*VT2(1)
W2VT1(1)= W2(2) *VT1(3)-W2(3)*VT1(2)
W2VT1(2) == (W2 (1) *VT1(3)-W2 (3) *VT1(1))
W2VT1(3)= W2 (1) *VT1(2)-W2(2)*VT1(1)
WV12(1)= W12(2)*V12(3)-W12(3)*V12(2)
WV12(2)=- (W12 (1) *V12(3)-W12(3)*V12(1))
WV12(3)= W12(1)*V12(2)-W12(2)*V12(1)
V12F=0.0
V12H=0.0
WNEF=0.0
WNEH=0.0
VWN= 0.0
W1TN=0.0
W2TN=0.0
Do 1 I=1,3
V12F= V12 (I)*EF(I)+V12F
V12H= V12(I)*EH(I)+V12H
WNEF= W12 (I) *EFN(I)+WNEF
WNEH= W12 (I)*EHN(I)+WNEH
VWN = EX(I)*WV12(I)+VWN
W1TN= EX(I)*W1VT2(I)+W1TN
1 W2TN= EX(I)*W2VT1(I)+W2TN
C... COMPUTE THE CURVATURE OF THE GENERATED SURFACE
B13=-KF#V12F-WNEF
B23=-KH#*V12H-WNEH
B33=-KF+V12F*#2~KH*V12H#**2+VWN-W1TN+W2TN
B11=B13**2/B33
B12=B13+B23/B33
B22=B23#%2/B33
T1=2.0D00*B13*B23
T2=B23%*2-B13**2- (KF-KH) *B33
SIG1F=0.5DOO*DATAN (T1/T2)
C....PRINCIPAL CURVATURES OF THE GENERATED SURFACE
IF (DABS (SIG1F) .LE.0.1D-5) THEN
KQ=0.5D0#* ( (KF+KH) + (B13*#2+B23%#2) /B33
& +(B23#42-B13*#2-(KF-KH) *B33) / (B33*DCOS (SIG1F)))
KS=KQ- (B23**2-B13*%*2~ (KF-KH) *B33) / (B33*DCOS (SIG1F))
ELSE
KQ=0.50D00* (KF+KH) +0.5D00#* (B13#**2+B23%*2) /B33
& +B13*B23/ (B33*DSIN(2.0D00* (+SIG1F)))
KS= KQ-2.0D00*B13*B23/ (B33+*DSIN(2.0D00* (+SIG1F)))
ENDIF
SIGSF=-SIG1F
C....PRINCIPAL DIRECTIONS OF THE GENERATED SURFACE
DO 2 I=1,3
EQ(I)= DCOS(SIGSF)*EH(I)~-DSIN(SIGSF)*EF(I)
2 ES(I)= DSIN(SIGSF)*EH(I)+DCOS(SIGSF)*EF(I)
IF (KX .LT. 2) GO TO 100
Q3=ES (1) *ET (1) +ES (2) *ET (2) +ES(3) *ET (3)
Q4=EQ(1) *ET (1) +EQ(2) *ET(2) +EQ(3) *ET(3)
IF(Q3.EQ.Q4) THEN
Q34=DATAN (Q4)
ELSE
Q34=DATAN2 (Q4,0Q3)
ENDIF
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KT2=KS*DCOS (Q34) **2+KQ*DSIN(Q34) **2
KM2=KS*DSIN (Q34) **2+KQ*DCOS (Q34) **2

GO TO 120
100 - KFF=KS
KHH=KQ
120 RETURN
END

c
C .... COMPUTE THE DIMENSIONS AND DIRECTIONS OF THE CONTACT ELLIPSE
c
SUBROUTINE ELLIP
IMPLICIT REAL*8S (A-H,0-2)
REAL*8 KSIG1,KSIG2,KFF,KHH,KS,KQ
COMMON /A300/ ES(3),EQ(3)
COMMON /A380/ KS,KQ
COMMON /A310/ KFF,KHH
COMMON /A340/ EFF(3),EHH(3)
COMMON /A360/ A,B,SI(3),FI(3)
DEL=0.007D0
PI=DACOS (-1.DO0)
S1=ES (1) *EFF (1) +ES (2) *EFF (2) +ES (3) *EFF (3)
S2=EQ(1) *EFF (1) +EQ(2) *EFF (2) +EQ (3) *EFF (3)
SIGSF=DATAN2(S2,S1)
C....COMPUTE THE DIMENSIONS OF THE CONTACT ELLIPSE (A & B)
KSIG1=KFF+KHH
KSIG2=KS+KQ
G1=KFF-KHH
G2=KS-KQ
A=(KSIG1-KSIG2-(G1**2-2.DO*G1*G2*DCOS (2.DO*SIGSF) +G2##2) *#0.5)
& /4.DO
B=(KSIG1-KSIG2+(Gl**2-2.DO*G1#G2*DCOS (2.DO*SIGSF) +G2%%2) **0.5)
& /4.DO
A= (DEL/ABS(A)) *#*0.5
B=(DEL/ABS(B) ) **0.5
C....COMPUTE THE ANGLE (ALF1) BETWEEN AXES OF ELLIPSE & PRINCIPLE
S1=G2*DSIN(2.DO*SIGSF)
S2=G1-G2*DCOS (2 .DO*SIGSF)
ALF1=0.5DO*DATAN2 (S1,S2)
S3=DSQRT(G1**2-2.D0*G1*G2*DCOS (2.DO*SIGSF) +G2#**2)
$52=51/83
SC2=52/83
ALF1=DATAN (SS2/ (1.D0+5C2))
ALF1=DABS (ALF1)
C.. AXES OF THE CONTACT ELLIPSE
DO 100 I=1,3
SI(I)=DSIN(ALF1)*EFF (I)+DCOS (ALF1)*EHH(I)
FI(I)=DCOS(ALF1)*EFF(I)~-DSIN(ALF1)*EHH(I)
100 CONTINUE
RETURN
END
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